Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 346: 140573, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303389

RESUMO

Availability of raw materials in the chemical industry is related to the selection of the chemical processes in which they are used as well as to the efficiency, cost, and eventual evolution to more competitive dynamics of transformation technologies. In general terms however, any chemically transforming technology starts with the extraction, purification, design, manufacture, use, and disposal of materials. It is important to create a new paradigm towards green chemistry, sustainability, and circular economy in the chemical sciences that help to better employ, reuse, and recycle the materials used in every aspect of modern life. Electrochemistry is a growing field of knowledge that can help with these issues to reduce solid waste and the impact of chemical processes on the environment. Several electrochemical studies in the last decades have benefited the recovery of important chemical compounds and elements through electrodeposition, electrowinning, electrocoagulation, electrodialysis, and other processes. The use of living organisms and microorganisms using an electrochemical perspective (known as bioelectrochemistry), is also calling attention to "mining", through plants and microorganisms, essential chemical elements. New process design or the optimization of the current technologies is a major necessity to enhance production and minimize the use of raw materials along with less generation of wastes and secondary by-products. In this context, this contribution aims to show an up-to-date scenario of both environmental electrochemical and bioelectrochemical processes for the extraction, use, recovery and recycling of materials in a circular economy model.


Assuntos
Reciclagem , Gerenciamento de Resíduos , Eletroquímica , Mineração , Resíduos Sólidos , Tecnologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-37737947

RESUMO

Nowadays, the presence of persistent dissolved pollutants in water has received increasing attention due to their toxic effects on living organisms. Considering the limitations of conventional wastewater treatment processes for the degradation of these compounds, advanced oxidation processes such as electro-Fenton and sono-chemical process, as well as their combination, appear as potentially effective options for the treatment of wastewater contaminated with bio-recalcitrant pollutants. In view of the importance of the development of processes using real effluents, this review aims to provide a comprehensive perspective of sono-electro-Fenton-related processes applied for real wastewater treatment. In the first section, the fundamentals and effectiveness of both homogeneous and heterogeneous electro-Fenton approaches for the treatment of real wastewater are presented. While the second part of this work describes the fundamentals of ultrasound-based processes, the last section focuses on the coupling of the two methods for real wastewater treatment and on the effect of the main operational parameters of the process. On the basis of the information presented, it is suggested that sono-electro-Fenton processes substantially increase the efficiency of the treatment as well as the biodegradability of the treated wastewater. The combined effect results from mass transfer improvement, electrode cleaning and activation, water electrolysis, and the electro-Fenton-induced production of hydroxyl radicals. The information presented in this work is expected to be useful for closing the gap between laboratory-scale assays and the development of novel wastewater technologies.

3.
Nanomaterials (Basel) ; 13(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110988

RESUMO

TiO2-SiO2 thin films were created on Corning glass substrates using a simple method. Nine layers of SiO2 were deposited; later, several layers of TiO2 were deposited, and their influence was studied. Raman spectroscopy, high resolution transmission electron spectroscopy (HRTEM), an X-ray diffractometer (XRD), ultraviolet-visible spectroscopy (UV-Vis), a scanning electron microscope (SEM), and atomic force microscopy (AFM) were used to describe the sample's shape, size, composition, and optical characteristics. Photocatalysis was realized through an experiment involving the deterioration of methylene blue (MB) solution exposed to UV-Vis radiation. With the increase of TiO2 layers, the photocatalytic activity (PA) of the thin films showed an increasing trend, and the maximum degradation efficiency of MB by TiO2-SiO2 was 98%, which was significantly higher than that obtained by SiO2 thin films. It was found that an anatase structure was formed at a calcination temperature of 550 °C; phases of brookite or rutile were not observed. Each nanoparticle's size was 13-18 nm. Due to photo-excitation occurring in both the SiO2 and the TiO2, deep UV light (λ = 232 nm) had to be used as a light source to increase photocatalytic activity.

4.
Environ Sci Pollut Res Int ; 29(28): 42305-42318, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35075566

RESUMO

In this work, a cylindrical flow-through electro-Fenton reactor containing graphite felt electrodes and an Fe(II) loaded resin was evaluated for the production of the Fenton reaction mixture and for the degradation of amoxicillin (AMX) and fecal coliforms containing aqueous solutions. First, the influence of several factors such as treatment time, current intensity, flow rate, and electrode position was investigated for the electrogeneration of H2O2 and the energetic consumption by means of a factorial design methodology using a 24 factorial matrix. Electric current and treatment time were found to be the pivotal parameters influencing the H2O2 production with contributions of 40.2 and 26.9%, respectively. The flow rate had low influence on the responses; however, 500 mL min-1 (with an average residence time of 1.09 min obtained in the residence time distribution analysis) allowed to obtain a better performance due to the high mass transport to and from the electrodes. As expected, polarization was also found to play an important role, since for the cathode-to-anode flow direction, lower H2O2 concentrations were observed when compared with the anode-to-cathode flow arrangement, indicating that part of the H2O2 produced in the cathode was destroyed at the anode. A fluorescence study of hydroxyl radical production, on the other hand, showed that higher yields were obtained using an anode-to-cathode flow direction (up to 3.88 µM), when compared with experiments carried out using a cathode-to-anode flow path (3.11 µM). The removal of a commercial formulation of the antibiotic AMX was evaluated in terms of total organic carbon, achieving up to 57.9% and 38.63% of pollutant mineralization using synthetic and real sanitary wastewater spiked, respectively. Finally, the efficiency of the process on the inactivation of fecal coliforms in sanitary wastewater samples was assessed, reducing 90% of the bacteria after 5 min of electrolysis.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Amoxicilina , Carbono , Fibra de Carbono , Eletrodos , Peróxido de Hidrogênio , Oxirredução
5.
Bioelectrochemistry ; 144: 108003, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34906820

RESUMO

Although microbial fuel cells (MFCs) are an attractive alternative to environmental remediation and power generation, there are still significant limitations related to power density and coulombic efficiency. Previous works have shown that the addition of humic acids (HA, a type of organic matter contained in soils and composting-by-products), improves the fuel to electricity conversion at the porous bioanodes (ba)|anolyte junction. In this work, MFCs having HA-modified bioanodes (MFC/baHA) were prepared and electrochemically analyzed utilizing discharge curves (cell potential vs current density plots) and electrochemical impedance spectroscopy (EIS). This investigation was motivated by looking for a deeper understanding of the functional effects of HA molecules on the operation of baHA-containing Microbial Fuel Cells (MFC/baHA). Our results revealed that the modification of bioanodes with HA molecules decreases the activation energy of the acetate ion oxidation, increasing by a factor of three the consumption rate of this fuel at the baHA|anolyte interface, and enhancing the diffusive transport of these ions through the pores of the baHA permeated by the anolyte.


Assuntos
Fontes de Energia Bioelétrica
6.
Molecules ; 26(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361706

RESUMO

Chemical and thermochemical transformations were performed on orange peel to obtain materials that were characterized and further tested to explore their potential as adsorbents for the removal of methylene blue (MB) from aqueous solutions. The results show the high potential of some of these materials for MB adsorption not only due to the surface area of the resulting substrate but also to the chemistry of the corresponding surface functional groups. Fitting of the kinetic as well as the equilibrium experimental data to different models suggests that a variety of interactions are involved in MB adsorption. The overall capacities for these substrates (larger than 192.31 mg g-1) were found to compare well with those reported for activated carbon and other adsorbents of agro-industrial origin. According to these results and complementary with theoretical study using Density Functional Theory (DFT) approximations, it was found that the most important adsorption mechanisms of MB correspond to: (i) electrostatic interactions, (ii) H-bonding, and (iii) π (MB)-π (biochar) interactions. In view of these findings, it can be concluded that adsorbent materials obtained from orange peel, constitute a good alternative for the removal of MB dye from aqueous solutions.


Assuntos
Citrus sinensis/química , Frutas/química , Azul de Metileno/isolamento & purificação , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Carvão Vegetal/química , Teoria da Densidade Funcional , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Pós , Eletricidade Estática , Resíduos/análise
7.
Chemosphere ; 274: 129957, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33979920

RESUMO

Disinfection is usually the final step in water treatment and its effectiveness is of paramount importance in ensuring public health. Chlorination, ultraviolet (UV) irradiation and ozone (O3) are currently the most common methods for water disinfection; however, the generation of toxic by-products and the non-remnant effect of UV and O3 still constitute major drawbacks. Photo-assisted electrochemical advanced oxidation processes (EAOPs) on the other hand, appear as a potentially effective option for water disinfection. In these processes, the synergism between electrochemically produced active species and photo-generated radicals, improve their performance when compared with the corresponding separate processes and with other physical or chemical approaches. In photo-assisted EAOPs the inactivation of pathogens takes place by means of mechanisms that occur at different distances from the anode, that is: (i) directly at the electrode's surface (direct oxidation), (ii) at the anode's vicinity by means of electrochemically generated hydroxyl radical species (quasi-direct), (iii) or at the bulk solution (away from the electrode surface) by photo-electrogenerated active species (indirect oxidation). This review addresses state of the art reports concerning the inactivation of pathogens in water by means of photo-assisted EAOPs such as photo-electrocatalytic process, photo-assisted electrochemical oxidation, photo-electrocoagulation and cathodic processes. By focusing on the oxidation mechanism, it was found that while quasi-direct oxidation is the preponderant inactivation mechanism, the photo-electrocatalytic process using semiconductor materials is the most studied method as revealed by numerous reports in the literature. Advantages, disadvantages, trends and perspectives for water disinfection in photo-assisted EAOPs are also analyzed in this work.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção , Peróxido de Hidrogênio , Oxirredução , Raios Ultravioleta , Água , Poluentes Químicos da Água/análise
8.
Ultrason Sonochem ; 73: 105483, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33571939

RESUMO

Among the different properties of the hydrophobic semiconductor surfaces, self-cleaning promoted by solar illumination is probably one of the most attractive from the technological point of view. The use of sonochemistry for nanomaterials' synthesis has been recently employed for the associated shorter reaction times and efficient route for control over crystal growth and the management of the resulting material's photocatalytic properties. Moreover, the sol-gel method coupled to sonochemistry modifies the chemical environment, with reactive species such as •OH and H2O2, which yield a homogeneous synthesis. Therefore, in the following investigation, the sol-gel method was coupled to sonochemistry to synthesize a SiO2@TiO2 composite, for which the sonochemical amplitude of irradiation was varied to determine its effect on the morphology and mechanical and self-cleaning properties. SEM and AFM characterized the samples of SiO2@TiO2 composite, and while the micrographs indicate that a high ultrasonic energy results in an amorphous SiO2@TiO2 composite with a low rugosity, which was affected in the determination of the contact angle on the surface. On the other hand, FTIR analysis suggests a significant change in both SiO2-SiO and SiO2-TiO2 chemical bonds with changes in vibrations and frequency, corroborating an important influence of the sonochemical energy contribution to the hydrolysis process. Raman spectroscopy confirms the presence of an amorphous phase of silicon dioxide; however, the vibrations of TiO2 were not visible. The evaluation of hydrophobic and self-cleaning properties shows a maximum of ultrasonic energy needed to improve the contact angle and rhodamine B (RhB) removal.

9.
Environ Sci Pollut Res Int ; 28(19): 23699-23706, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33010016

RESUMO

Vinasse wastewater from tequila industry that has been conventionally treated is usually characterized by a chemical oxygen demand (COD) above 150 mg L-1, which is the maximum content permitted for discharge by Mexican Regulation. In order to increase the wastewater quality, different processes were applied, and from the experimental results, the advantages and limitations were analyzed. In this way, although Fenton experiments showed acceptable COD removal efficiencies (79-90%), operation as well as cost limit its adoption as a viable technology. Therefore, additional experiments explored electro-Fenton (EF) as well as adsorption coupled to EF in a tubular reactor. The corresponding data revealed that there was no additional increase in COD removal performance probably due to the low oxygen solubility in the electrolytic solution and the high pH that prevents the existence of Fe2+ ions necessary for the Fenton mixture. In view of these results, when an activated carbon (AC) filter was coupled to polarization at current densities between 0.5 and 2 mA cm-2, removal efficiencies from 71 to 81%, corresponding to final COD of 78 to 33 mg L-1, were achieved. Also, the adsorbent surface was continuously regenerated, promoting a more efficient adsorption and a longer service life for the AC filter. In this case, by using a current density of 0.5 mA cm-2, COD was reduced to sufficiently small values for discharge into natural water bodies, maintaining low energy consumption and therefore acceptable operation costs.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Análise da Demanda Biológica de Oxigênio , Peróxido de Hidrogênio , Oxirredução , Eliminação de Resíduos Líquidos
10.
J Environ Chem Eng ; 8(5): 104414, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33014705

RESUMO

Electro-Fenton (EF) based water treatment processes using activated carbon (AC) packed beds constitute an attractive approach for the development of competitive degradation technology of persistent pollutants in aqueous effluents. In this work, the results of a study aimed to assess the effect on the EF performance of different parameters of the reactor's operation are presented. By means of a factorial experimental design, the influence of the AC source (lignitic or vegetal), AC acid pre-treatment, particle size distribution and the amount of Fe loaded resin in the reactor were analyzed. From the resulting data it was found that the most influential parameter in the EF performance of the reactor is the AC source. Modest effects were observed for AC acid pre-treatment, which limits Fe ion adsorption on the AC substrate. The use of a wide particle distribution of AC particles was also found to improve inter-particle electrical contact, thus favoring the electrochemical processes that take place inside the reactor. An investigation on the effect of the amount of Fe in the reactor as well as its distribution dynamics, also revealed that an excess of Fe ions in the reactor decreases the EF performance of the system since Fe ions efficiently adsorb on the AC substrate, particularly in non- acid treated samples. The best operation conditions consisted on using un-meshed vegetable AC, without acid pretreatment in an EF reactor loaded with 0.25 g of Fe, which allowed to reach full color removal of bright blue FCP model dye in 70 min.

11.
Electrochim Acta ; 340: 135972, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32355361

RESUMO

In this work, commercially available Polymethyl-meta-acrylate (PMMA) spectroscopy cells were modified on the external walls with films of TiO2, Ti4O7 or TiO2/Ti4O7 mixtures. Film characterization was carried out using SEM and UV-vis spectroscopy. The results of photocatalytic (PC), electro-oxidation (EO), and photoelectrochemical (PEC) experiments on the decolorization of a methyl orange (MO) model dye solution showed that while anatase provides better photocatalytic properties and the partially reduced Ti4O7 larger electronic conductivity, the TiO2/Ti4O7 composite film behaves as a semiconductor substrate that combines the advantages of both materials (for PEC experiments for instance, decolorization values for the model dye solution using TiO2, Ti4O7 and a TiO2/Ti4O7 mixed film, corresponded to 35%, 46% and 53%, respectively). In order to test this film as an effective photoanode material in a 3-D type reactor for water treatment processes, a TiO2/Ti4O7 modified PMMA spectroscopy cell was inserted in an activated carbon (AC) bed so that the semiconductor material could be illuminated using an external UV source positioned inside the PMMA cell. The connected AC particles that were previously saturated with MO dye were used as cathode sites for the oxygen reduction reaction so that the photoelectrochemical reactions that take place in the anode could be complemented with coupled electro-Fenton processes in the cathode. As expected, the combination resulted in an effective decolorization of the dye solution that results from a complex combination of processes. The experimental decolorization data was successfully fitted to a pseudo-first order kinetic model so that a deeper understanding of the contribution of each process in the reactor could be obtained.

12.
Chemosphere ; 250: 126260, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32105860

RESUMO

The disinfection of helminth eggs and Escherichia coli contaminated aqueous solutions, was studied using an electro-Fenton reactor equipped with a polarized activated carbon (AC) packed bed and two chambers loaded with cation exchange resins. Experiments using different arrangements and operation conditions, revealed that effective elimination of Escherichia coli takes place in all electrochemical disinfection tests. For the more resistant helminth eggs however, adsorption, electro-oxidation and electro-Fenton experiments showed retention within the reactor and pathogen inactivation values of 0, 16, and 25%, respectively. Using helminth eggs concentration data in different sections of the reactor, optical microscopy analysis and an exploratory computer simulation, differences in the disinfection performance were explained and new recirculation and flow direction and polarization switching operation schemes were defined. The corresponding experiments revealed that the effective coupling between adsorption and electro-Fenton phenomena, all along the AC packed bed compartment, results in 100% inactivation of helminth eggs.


Assuntos
Desinfecção/métodos , Helmintos , Eliminação de Resíduos Líquidos/métodos , Animais , Carvão Vegetal , Simulação por Computador , Escherichia coli , Humanos , Peróxido de Hidrogênio/química , Oxirredução , Águas Residuárias
13.
J Environ Chem Eng ; 7(4): 103228, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31417846

RESUMO

The electro-Fenton degradation of Triclosan in aqueous solution was studied using a cylindrical reactor in which polarized carbon cloth electrodes and a cation exchange resin were employed. Using a factorial design of experiments approach, the effect of four variables (considering two levels for each one), was measured on four response parameters that reflect the electrooxidation efficiency of the electrochemical reactor. The results revealed that in all cases triclosan degradation was very efficient (above 95%) and that while there is a reasonable effect of all variables and their interactions, the one with the strongest influence on the process is the nature and magnitude of the ionic strength of the electrolytic solution. In this way, while the presence of a buffer species in this solution can keep the pH in a value that affects the generation of •OH radicals from the Fenton mixture, a high ionic strength solution can promote the elimination of Fe ionic species from the reactor by decreasing resin Fe retention due to competition effects of other ions for the binding sites of the substrate. HPLC experiments of the effluent solutions, also revealed that the degradation by-products of triclosan were dependent on the nature and ionic strength of the electrolytic solution in the electro-Fenton process under study. Finally, comparison of the different operation modes, also suggested that electro-adsorption of Fe cationic species in the negatively polarized cathode surface, is the main factor that controls Fe ion retention within the reactor.

14.
Chemosphere ; 224: 698-706, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30851521

RESUMO

Iron-supported catalyst on granular activated carbon was prepared for its use in heterogeneous Fenton reaction coupled to an in situ H2O2 electro-generation. For this process, an electrolysis cell was employed, using carbon felt as cathode and graphite as anode. A solution of H2O2 (electrogenerated at a rate of 30 mg L-1 h-1) was obtained using a current intensity of 12 mA. In order to promote the decomposition of H2O2 to OH, a Carbon-Fe catalyst was used. This catalyst was prepared by incipient wet impregnation using FeSO4 as precursor salt to obtain samples with 9% wt of iron. Samples were characterized by EDX, FTIR and XPS spectroscopy before and after wastewater treatment using phenol as model molecule. Two iron oxidation states on the samples were found, Fe2+ and Fe3+. The ratio between Fe2+/Fe3+ was 1.29 which was later reduced to 0.92 after Fenton process; this might be associated with the metal oxidation (Fe2+ to Fe+3) occurring during Fenton-reaction, thus indicating that H2O2 decomposition was carried out by Fe2+ on carbon surface. Detection and quantification of hydroxyl radical were carried out by fluorescence spectroscopy, obtaining a radical concentration of 3.5 µM in solution. Iron in solution were determined, showing a concentration of 0.1 mg L-1, making evident that the supported metal is stable and the reaction is carried out in a heterogeneous phase. Results showed an environmentally friendly process that can generate reagents in situ, with high efficiencies in the degradation of pollutants and minimizing the formation of toxic byproducts, which are common in conventional treatments.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Peróxido de Hidrogênio/química , Ferro/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Catálise , Eletrodos , Eletrólise , Compostos Férricos/química , Compostos Ferrosos/química , Grafite/química , Radical Hidroxila/química , Oxirredução , Fenol
15.
Waste Manag ; 85: 202-213, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30803574

RESUMO

The aim of this study was to optimize the integral valorization of orange peel waste by obtaining activated carbon after a process of pectin recovery in recycling of orange peel by transformation to value-added products of pectin extraction and activated carbon preparation. The study was supported by statistical analysis, and the significant factors and optimal conditions were obtained from the statistical analysis. Using a representative sample of orange peel waste, a yield of 29.37% pectin was recovered at the optimal operating conditions (phosphoric acid as the extraction agent, 95 °C as the impregnation temperature and a 2-hour extraction time). Activated carbon (AC) was prepared from the remaining solid residue. The conditions that improve the resulting material quality were H3PO4 [0.6 M] used as the activating agent, an impregnation temperature of 95 °C, a carbonization temperature of 400 °C and 1 h of carbonization time. The obtained AC showed a sorption capacity of 2342.91 mg g-1, a value higher than that reported for commercial activated carbon. Using a model dye chemical, the sorption kinetics and thermodynamics of AC were found to follow a pseudo-second-order rate and the Freundlich models, respectively. Using the process conditions obtained in this study, it was possible to optimize the yield and also obtain good-quality products from valorization of orange peel.


Assuntos
Citrus sinensis , Pectinas , Carvão Vegetal , Cinética , Temperatura
16.
Chemosphere ; 199: 251-255, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29448191

RESUMO

A novel arrangement for an electro-Fenton reactor aimed to treat neutral wastewater is presented. The arrangement consists on three-compartments in series, two of them packed with a cation exchange resin and one positioned between these, containing a polarized activated carbon column where the electrochemical generation of the Fenton reagent takes place. While the hydroxyl radicals electrochemically produced in-situ, react with the pollutant species adsorbed on the activated carbon cathode, the resin compartments administrate and collect the iron cation and the hydrated proton species in alternating flow direction cycles. The resulting process is a system that does not require acid or iron chemical addition to the process while at the same time, renders decontaminated water free of iron-dissolved species at neutral pH. The proposed electrochemical reactor arrangement is therefore the basis for the design of commercially viable electro-Fenton reactors in which the addition and subsequent removal of acid and iron chemicals is avoided; two of the currently most limiting features for the development of electro-Fenton technology for treating wastewater.


Assuntos
Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/química , Ferro/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Análise Custo-Benefício , Técnicas Eletroquímicas/economia , Eletrodos , Radical Hidroxila/química , Oxirredução , Purificação da Água/economia
17.
Water Sci Technol ; 73(12): 2849-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27332829

RESUMO

Microbial fuel cells (MFCs) are capable of removing the organic matter contained in water while generating a certain amount of electrical power at the same time. One of the most important aspects in the operation of MFCs is the formation of biofilms on the anode. Here, we report the characterization of different carbon electrodes and biofilm using a rapid and easy methodology for the growth of biofilms. The biofilms were developed and generated a voltage in less than 4 days, obtaining a maximum of 0.3 V in the cells. Scanning electron microscopy images revealed that growth of the biofilm was only on the surface of the electrode, and consequently both carbon cloth Electrochem and carbon cloth Roe materials showed a greater quantity of volatile solids on the surface of the anode and power density. The results suggested that the best support was carbon cloth Electrochem because it generated a power density of 13.4 mW/m(2) and required only a few hours for the formation of the biofilm.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Carbono/análise , Eletrodos , Microscopia Eletrônica de Varredura , Fatores de Tempo
18.
Anal Chim Acta ; 812: 18-25, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24491759

RESUMO

Glassy carbon electrodes (GCE) were sequentially modified by cysteamine-capped gold nanoparticles (AuNp@cysteamine) and PAMAM dendrimers generation 4.5 bearing 128-COOH peripheral groups (GCE/AuNp@cysteamine/PAMAM), in order to explore their capabilities as electrochemical detectors of uric acid (UA) in human serum samples at pH 2. The results showed that concentrations of UA detected by cyclic voltammetry with GCE/AuNp@cysteamine/PAMAM were comparable (deviation <±10%; limits of detection (LOD) and quantification (LOQ) were 1.7×10(-4) and 5.8×10(-4) mg dL(-1), respectively) to those concentrations obtained using the uricase-based enzymatic-colorimetric method. It was also observed that the presence of dendrimers in the GCE/AuNp@cysteamine/PAMAM system minimizes ascorbic acid (AA) interference during UA oxidation, thus improving the electrocatalytic activity of the gold nanoparticles.


Assuntos
Ácido Ascórbico/química , Cisteamina/química , Eletrodos , Ouro/química , Nanopartículas Metálicas , Poliaminas/química , Ácido Úrico/sangue , Carbono/química
19.
Environ Sci Technol ; 47(14): 7927-33, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23782426

RESUMO

An electro-Fenton-based method was used to promote the regeneration of granular activated carbon (GAC) previously adsorbed with toluene. Electrochemical regeneration experiments were carried out using a standard laboratory electrochemical cell with carbon paste electrodes and a batch electrochemical reactor. For each system, a comparison was made using FeSO4 as a precursor salt in solution (homogeneous system) and an Fe-loaded ion-exchange resin (Purolite C-100, heterogeneous system), both in combination with electrogenerated H2O2 at the GAC cathode. In the two cases, high regeneration efficiencies were obtained in the presence of iron using appropriate conditions of applied potential and adsorption-polarization time. Consecutive loading and regeneration cycles of GAC were performed in the reactor without great loss of the adsorption properties, only reducing the regeneration efficiency by 1% per cycle during 10 cycles of treatment. Considering that, in the proposed resin-containing process, the use of Fe salts is avoided and that GAC cathodic polarization results in efficient cleaning and regeneration of the adsorbent material, this novel electro-Fenton approach could constitute an excellent alternative for regenerating activated carbon when compared to conventional methods.


Assuntos
Carbono/química , Técnicas Eletroquímicas , Eletrodos
20.
Water Res ; 43(14): 3593-603, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19560182

RESUMO

Electrochemical advanced oxidation processes (EAOPs) are used to chemically burn non biodegradable complex organic compounds that are present in polluted effluents. A common approach involves the use of TiO2 semiconductor substrates as either photocatalytic or photoelectrocatalytic materials in reactors that produce a powerful oxidant (hydroxyl radical) that reacts with pollutant species. In this context, the purpose of this work is to develop a new TiO2 based photoanode using an optic fiber support. The novel arrangement of a TiO2 layer positioned on top of a surface modified optical fiber substrate, allowed the construction of a photoelectrochemical reactor that works on the basis of an internally illuminated approach. In this way, a semi-conductive optical fiber modified surface was prepared using 30 microm thickness SnO2:Sb films on which the photoactive TiO2 layer was electrophoretically deposited. UV light transmission experiments were conducted to evaluate the transmittance along the optical fiber covered with SnO2:Sb and TiO2 showing that 43% of UV light reached the optical fiber tip. With different illumination configurations (external or internal), it was possible to get an increase in the amount of photo-generated H(2)O(2) close to 50% as compared to different types of TiO2 films. Finally, the electro-Fenton photoelectrocatalytic Oxidation process studied in this work was able to achieve total color removal of Azo orange II dye (15 mg L(-1)) and a 57% removal of total organic carbon (TOC) within 60 min of degradation time.


Assuntos
Técnicas Eletroquímicas/instrumentação , Fibras Ópticas , Processos Fotoquímicos , Titânio/química , Eliminação de Resíduos Líquidos , Purificação da Água , Antimônio/química , Carbono/isolamento & purificação , Catálise , Cor , Eletrodos , Peróxido de Hidrogênio/química , Microscopia Eletrônica de Varredura , Oxirredução , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...